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Executive Summary

The work presented in this report is the result of collaboration between Rome Laboratory
and Texas Tech University. This work builds on and extends our previous effort in which the
initial version of OMARS (Optimal Mapping Alternate Routing System) was developed. In
the current effort, OMARS is extended for use with two parallel architectures: the nCUBE
2 and the Intel Paragon (the original version of OMARS was operational with the nCUBE
2 only). Modifications were made to every major subsystem of OMARS, and these changes
are documented in this report. In addition to these functional modifications, the utility of
OMARS is also demonstrated using measured execution times of an FFT algorithm, which
is commonly found in real-time signal processing applications. Also included is an evaluation
of the alternate routing capability of the nCUBE 2.




1 Background and Motivation for the Work

Much of the general background and motivation for this work is the same as that discussed in
the report for the original effort, “Software Techniques for Balancing Computation & Com-
munication in Parallel Systems,” Rome Laboratory, Air Force Materiel Command, Griffiss
Air Force Base, NY, Final Technical Report No. RL-TR-94-98, July 1994 [2]. For brevity,
some of these general issues are only overviewed here as needed; the interested reader should

refer to the original report for more details.

1.1 Mapping and Routing Performance Issues

In general, static mapping and routing choices do impact delivered performance on parallel
systems. This fact is one of the key motivators for the OMARS project. To illustrate the
impact of mapping choice, consider the simple example shown in Fig. 1. The upper-left
portion of the figure shows an example task graph in which the eight vertices répresent sub-
tasks (So through S7) and the directed edges represent communications among the subtasks.
So, for example, the edge from Sy to S, indicates that So must send a message to Ss at
some point during the execution of the task graph. Shown in the upper-right portion of the
figure is an architecture graph. Here, the eight vertices (Pp through P7) denote processors
of a parallel machine and the interconnecting edges are communication links; the particular
interconnection shown is a hypercube.

The lower portion of Fig. 1 illustrates the effects of two different mappings of subtasks
to processors (Mappings A and B). For Mapping A, note that the paths for the required
communications generally require more than one communication link. Also, under the as-
sumption that the communications are initiated at approximately the same time, there will
be contention for some of the communication links. For instance, assuming the links are
bi-directional, the link connecting Sy to Se is used to establish two distinct communication
paths. If a cut-through routing scheme is employed [6], then contention will occur on this
link, causing a delay in the time required for one of the paths to be established. Shown in the
lower-right portion of the figure is Mapping B. Clearly, this mapping makes more effective
use of the available communication links for the given communication pattern associated
with the example task graph. In this mapping, the required communication paths among all
pairs of communicating subtasks are nonconflicting; each utilizes a distinct communication
link of the hypercube architecture.

As shown in Fig. 2, for a fixed mapping choice, routing choices can also impact delivered
performance. In the upper portion of the figure is a sample task graph having nine subtasks,

and a nine processor architecture graph interconnected as a 3 x 3 planar mesh. The lower
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Figure 1: Example showing impact of mapping choice.
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Figure 2: Example showing impact of routing choice.

portion shows the effect of two different routings for the same mapping choice. In Routing
A, note that some of the communication links are utilized by two communication paths, e.g.,
the link connecting Sy to S;. However, in Mapping B, each (bi-directional) communication
link is used by at most one path. Thus, utilizing Mapping B would generally result in less
delay from link contentions. '

OMARS is a tool that can help the user make mapping and routing choices that result in
good performance. One of the goals of OMARS is to automate portions of the process by hid-
ing the underlying details and complexity of solving mapping and routing problems from the
user. However, flexibility is still provided to allow the user to decide which mapping/routing

selection is ultimately implemented.

1.2 Software Evolution and Maintenance Issues

The functionality of complex parallel applications can evolve over time. When this occurs,

the communication pattern among the subtasks of the application may also change. For



this reason, the problems of re-mapping and re-routing may need to be addressed in order
to maintain peak performance. Thus, optimal mapping and routing are not necessarily
“one-time” problems to be solved only during the initial phases of the parallel software
development process. Instead, these problems may arise again as the functionality of the
application is changed or enhanced. This introduces new software management problems,
compared to the sequential software domain. A tool like OMARS could be employed to
reduce the difficulty of addressing the mapping and routing problems throughout the lifecycle

of a parallel application.

1.3 Overview of the Work

In OMARS, a parallel application program is instrumented and executed once to obtain a
tracefile, which contains information about the communication pattern present in the parallel
application program. This information is used to generate and display a task graph within
OMARS. The target architecture is modeled using an appropriate architecture graph. With
these models in place, the user can interactively select different mapping/routing techniques
and view the results (both graphically and in terms of numerical metrics) of each selection.
A detailed description of OMARS, including sample screen dumps, etc., can be found in [2]
and [7].

A conceptual overview of the function of OMARS is shown in Fig. 3. Note that the
input to OMARS is the tracefile. Based on this input, OMARS produces graphics and
metrics (one for each candidate mapping/routing algorithm combination selected by the
user) that aid the user in deciding how to best map/route subtasks/communications for
the target architecture. The output of OMARS is a “taskfile,” which contains the mapping
and routiﬂg information produced by the user-selected algorithms within OMARS. This
taskfile is applied when executing the application on the target architecture. The actual
performance obtained can then be used a feedback information to the user to help in the
tuning process of achieving the best possible mapping/routing choice. This is an important
feedback link, as the performance metrics provided by OMARS are based on static analysis,
and do not, therefore, always perfectly correlate with actual execution times (this issue is
discussed further in Section 6).

The original version of OMARS was developed for operation with the nCUBE 2 machine,
which is an MIMD machine with a hypercube interconnection network [8]. Thus, all of
- the mapping and routing techniques developed and implemented for the original version of
OMARS were designed specifically for the hypercube architecture. Also, the tracing facilities
were designed for the nCUBE 2.

The primary goal of this effort was to extend the operation of OMARS for use with
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Figure 3: Conceptual overview of the function of OMARS.



another parallel architecture: the Intel Paragon, which is an MIMD machine with a mesh
interconnection network. Thus, all of the mapping and routing techniques for the hypercube
had to be modified (or, in some cases, completely re-designed) based on the mesh architecture
of the Paragon. Also, the graphics had to be extended for displaying a mesh architecture
graph. Numerous changes were also made to the user interface to enable the user to map an
application, originally developed on one machine, onto the other machine.

The remainder of the report is organized as follows. In Section 2, the user interface
modifications are described. In Section 3, the modifications associated with the tracing
portion of OMARS are overviewed. The changes to the mapping and routing algorithms are
described in Sections 4 and 5, respectively. In Section 6, timing results for an application
study is conducted (based on an FFT algorithm) to demonstrate the impact that mapping
can have on performance. Section 7 evaluates the alternate routing capability of the nCUBE
2.

2 TUser Interface Modifications

The most important interface to the user is made through the main menu. A comparison of
the original and new versions of the main menu for OMARS is shown in Fig. 4. An overview

of the specific user interface changes made are as follows:
¢ developed menu-driven tracefile selector interface;
e added “select target architecture” button;

e developed target architecture configuration interface (enables the “mixing” of tracefile

source and target architectures);

o developed architecture window for Paragon (graphical view of mesh and metrics bar
charts);

e developed an intuitive “grey-out” mechanism to prevent invalid menu selections (based

on implementation of the valid state transition diagram); and

e added a “start over” button within the main menu.

Fig. 5 illustrates how the new user interface operates. Each of the four views of the menus
shown represent a different “state” of operation during an OMARS session. The upper-left
corner illustrates the main menu that is generated when OMARS is first started. For each
state, only the “un-greyed” buttons are valid options. Thus, initially, the user can press only
three buttons: “Read Tracefile”, “Help”, or “Quit OMARS”. The arrows emanating from
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Figure 4: Comparison of original and new main menus.
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each valid button describe the action and/or transition that is made. For example, if the
“Read Tracefile” button is selected, then a tracefile pop-up window is generated. After the
user makes selections from the tracefile pop-up window (not illustrated here), then the main
menu transitions to the state shown in the upper-right corner of Fig. 5. If the “Help” button
is selected, then a help index pop-up is generated. After receiving help, the menu returns to
the same state from which the “Help” button was selected.

In a typical OMARS session, a user would first select the “Read Tracefile” button, and
select a tracefile that appears in the tracefile pop-up window. Then, the user might select
the “Show Task Graph” button to view the task graph associated with the selected tracefile.
The task graph gives the user a graphical view of the application’s communication pattern.
Next, the user presses the “Select Target Architecture” button, which generates a target
architecture pop-up. This pop-up allows the user to select either the nCUBE 2 or Intel
Paragon architectures. After the basic architecture is decided, the user is further questioned
to provide a configuration for the selected architecture. For the nCUBE 2, this means
defining the dimension of the hypercube, for the Paragon, this means defining the “X” and
“Y” dimensions of the mesh. Again, the details of these pop-up menus are not shown in
Fig. 5; they are best seen through actual use of OMARS.

After selecting and configuring a target architecture, the user might then want to choose
a mapping scheme and a routing scheme by pressing the “Select Mapping/Routing” button.
This action results in the generation of pop-ups for selecting first the mapping algorithm,
then the routing algorithm. Also generated is an architecture graph for this mapping/routing
combination. The architecture graph gives a graphical view of the target architecture in
which the vertices and edges are color-coded to indicate the utilizations of the processors and
communication links, respectively. After the mapping and routing algorithms are selected,
the main menu transitions to the final state shown in the lower-left corner of Fig. 5. From this
state, the user can press the “Generate Taskfile” button, which creates a file containing the
information for implementing the mapping and routing (produced by the selected algorithms)
on the target architecture. Using this taskfile, the user can then execute the application on

the target architecture as a means of tuning performance.

3 Tracefile Modifications

In the original version of OMARS, we developed our own instrumentation code for tracing
the communications that occurred in an nCUBE 2 program. Initially, this code was ported
to the Paragon. Although this “home-brew” instrumentation works, it does add a layer of

complexity to the process of using OMARS. At about the mid-point of the effort (shortly
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State Transitions with the New Interface
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Figure 5: State transitions associated with the new user interface.
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after porting our tracing facility to the Paragon), Intel introduced a software environment
for the Paragon called IPD (Intel Parallel Debugger), which included a tracing facility. The
tracefiles generated by IPD are very large, and contain very detailed information about
the various function calls used by the application program including those associated with
communications. Ultimately, we managed to “de-code” the format and content of the in-
formation contained in an IPD tracefile (which is a binary file), and were able to modify
OMARS to accept IPD tracefiles.

Being able to read IPD tracefiles was an important enhancement made to OMARS,
because it enables OMARS to leverage the use of a commercial software environment that
is stable and supported by Intel. Thus, a Paragon user that is familiar with IPD can easily
begin using OMARS.

Thus, OMARS accepts three types of tracefiles:

e nCUBE 2 tracefiles from our instrumentation;
e Paragon tracefiles from our instrumentation; and

e Paragon IPD tracefiles.

Another important feature that was added to OMARS was the ability to read a tracefile
generated by one architecture with a particular configuration (e.g., the nCUBE 2 configured
as a 3-dimensional hypercube) and target another architecture and/or configuration (e.g.,
the Paragon as a 3 x 4 mesh). An overview of the different possible combinations are given
in Fig. 6. These choices add even more degrees of freedom in the utilization of OMARS.
Thus, not only is the mapping/routing choice an option, but also the target architecture and
its configuration. This enables the user to play “what if” games. For instance, suppose that
performance requirements cannot be met using an mesh architecture. The user could then

investigate the possibility of mapping the application onto a hypercube.

4 Mapping Algorithm Modifications

Some of the changes that were required in converting the original mapping algorithms (de-
signed for hypercubes) to operate with the mesh topology are given in this section. Many
of the details of this conversion process are not included here; instead, an overview of the
conceptual changes required for selected algorithms is provided. The reader interested in the
details of the implementation of a particular mapping algorithm should refer to the source
code for that algorithm.

A key concept in the original version of the “greedy mapper”‘ was to map subtasks to

processors by considering the processors in a Gray code order [6]. Traversing processors

13




nCUBE 2 tracefile Paragon
target
/nCUBE 2 Paragon architecture nCUBE 2 Paragon\
same different different  different same

AWAWA

Figure 6: Overview of the number and types of combinations possible for a given tracefile
to an ultimate mapping/routing selection.

mapping/
routing

of a hypercube in Gray code order is tantamount to traversing processors in an “nearest
neighbor” order. Fig. 7 shows an example gray code traversal of a 3-dimensional hypercube.
For the case of the mesh architecture, the traversal of the processors were done in what we
define as a “snake order,” as shown in Fig. 8. Traversing in a snake order on a mesh preserves
the nearest neighbor property associated with the original hypercube version of the greedy
mapper. Initial experiments done using the modified greedy mapper showed that reasonable
mesh mappings can be obtained very quickly.

Another mapping algorithm that was modified was the original “mincut bipartitioning

Figure 7: Gray code order traversal of processors in a 3-dimensional hypercube; the key to
the operation of the original greedy mapper.
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Figure 8: “Snake order” traversal of processors in 4 X 3 mesh; the key modification made to
the greedy mapper for use with mesh topologies.

mapper,” which can characterized as a hypercube clustering algorithm. The main idea of this
technique is to use a number of recursive calls to a clustering function equal to the dimension
of the hypercube. Because the dimension of the hypercube 1s log, N, where N is the number
of processors, for the case of the mesh, the key change was to use |log, N| recursive calls of
the clustering function. This relatively simple modification resulted in reasonable mapping
solutions when applied to a mesh topology.

The “hypersphere mapper” algorithm represents the mapping algorithm for which the
most extensive changes were made. The key ideas above in the original version of hypersphere

mapper, which was designed for hypercubes, were as follows:
e approximate discrete hypercube with continuous hypersphere;
e formulate continuous average distance objective function;
e minimize continuous objective using nonlinear programming techniques; and
e discretize continuous solution onto discrete hypercube.

A detailed description of the hypersphere algorithm has been published in [1].
For using this approach for a mesh, the first and last key ideas were modified. In par-
ticular, the mesh is approximated as a continuos plane. Thus, the key ideas in the modified

version of this approach are as follows:
e approximate discrete 2-D mesh with continuous 2-D plane;
e formulate continuous average distance objective function;
e minimize continuous objective using nonlinear programming techniques; and

e discretize continuous solution onto discrete 2-D mesh.




T

boundary of
continuous plane

tasks iteratively migrate
within continuous plane
according to the gradient

Figure 9: Geometric view of the modification made to the original hypersphere mapper for
use with meshes.

A geometric view of this approach is illustrated in Fig. 9. The small solid circles represent
subtasks whose “locations” are initially defined with respect to the continuous 2-D plane.
The subtasks iteratively migrate around the continuous plane according to the gradient of the
continuous objective function. After convergence, the continuous locations of the subtasks
are converted to processor numbers based on the cellular decomposition shown (the physical
mesh architecture is shown “below” the continuous plan in dashed lines).

Again, not all of the details required to convert the original mappers (for hypercubes) to
appropriate mappers for meshes has been given in this section. However, the three conver-
sions overviewed briefly here are representative of the types of changes that had to be made.
The source code for the mapping algorithms is well-documented, and the interested reader

should consult these listings for more details.

5 Routing Algorithm Modifications

Two routing algorithms are available within OMARS: multiflo router and default router. The
multiflo router [4, 3] is an optimal routing algorithm that aims to minimize the link contention
of the target architecture. Thus, the multiflo router produces a set of routes (one for each
communicating source-destination pair) that tend to minimize the maximum link contention

in the architecture. There are two input files required for the multiflo router: (1) the network

16




default route from PE 0 to PE 7

Figure 10: Example of the default route from processor 0 to processor 7 1n a 3-dimensional
hypercube.

topology file and (2) the communication pattern file. Thus, to implement multiflo router for
a given configuration of a mesh, we wrote code that generated the corresponding network
topology file the multiflo router. This was a fairly easy modification given that the code had
~ already been written in the original version of OMARS for generating a network topology
file for the hypercube architecture. No modification to the original code for generating the
communication pattern file was required.

The default router implements the routing used by the target architecture. For example,
the default route for a 3-dimensional hypercube from processor 0 (000) to processor 7 (111) is
shown in Fig. 10. Note that the default route is defined by correcting bits of the destination
in a “right to left” order. '

The default router on the Paragon is called an “X-Y” routing scheme. Asshown in Fig. 11,
the route first moves in the horizontal direction (i.e., “X” direction) and then in the vertical
direction (i.e., “Y” direction). Code was written to define the required communication links
for any possible source-destination pair in an arbitrary mesh. This addition completed the

functionality of the default router for the Paragon.

6 An Application Study on the nCUBE 2

6.1 Overview

The objective of the study described in this section is to demonstrate the effect that mapping
has on a parallel application task. The selected parallel algorithm is the FF'T, which is used
as a “building block” in several real-time applications such as SAR processing and frequency-
ramp filtering. The executing timing experiments were conducted on the nCUBE 2.

Timings associated with 1,000 randomly generated mappings were collected, and statisti-
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Figure 11: Example of the default route from processor -0 to processor 7 in a mesh.

cal analysis—which quantifies correlation between measured communication time and three
different mapping metrics—is presented. Two of the metrics considered, average distance
and maximum link utilization factor, are metrics that are used by OMARS for evaluating
mapping and routing choices (they are displayed in the architecture graph window). The
application program considered for this study is a radix-2 decimation-in-time fast Fourier

transform (FFT) algorithm [9].

6.2 The FFT Algorithm

In general, a P = 27 point FFT algorithm requires a total of p stages of computation, labeled
0, ..., p—1. Let d(q) and D(q) denote the values of the gth input and output points of
the FFT algorithm, respectively, 0 < ¢ < 2° — 1. Let the binary representation of label
q be denoted by ¢ = (gp—-1---¢o), and let cube;(q) = (gp—1...Gi...q0) [10]. At stage i of
computation, the current value of the gth point is multiplied by an appropriate weighting
factor, and the result is added to the current value of point number cube,_;(¢) (see Fig. 12).
Refer to [9] for precise definitions of the weighting factors.

For this study, the input data set was decomposed into P/N contiguous blocks (where
N = 2" is the number of nodes of the nCUBE 2 that were used), and P was chosen to be
larger than N. Thus, the set of points initially allocated to subtask 7, 0 <73 < N -1, is
given by {d(q) : (£)j < ¢ < (£)(j +1) — 1}. Based on this data decomposition, the first
n = log(V) stages of the FF'T require communication among subtasks. The last p — n stages
require only local data for each subtask. The communication pattern for the first n stages is
as follows: at stage 7, 0 <7 < n —1, subtask j sends data to subtask cube,_;(j). At each of
these stages, every subtask sends a message to and receives a message from one other task.
For example, for n = 2 and p = 3, subtask 0 sends data points d(0) and d(1) together as one
message to subtask 2, at stage 0. This is illustrated in Fig. 13.
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Data flow graph for a P = 8 point decimation-in-time FFT algorithm.
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6.3 Metrics for Quantifying Mapping Quality

Three metrics were used to characterize mappings for the parallel FFT algorithm: average
distance, ¢; maximum link utilization, §; and sum of the per stage maximum link utilization,
q. Average distance (o) refers to the average distance between all pairs of subtasks that com-
municate over the execution of the entire program (i.e., over all n stages of communication).
The maximum link utilization (8) indicates the maximum number of times any link is used
during the execution of the entire program. To define the sum of the per stage maximum
link utilization, it is necessary to first define the stage ¢ maximum link utilization, which is
the maximum number of times any link is used during stage ¢. Therefore, the sum of the
per stage maximum link utilization (7) is the sum of all stage # maximum link utilizations,
0<i:<n-1

The previously defined N subtasks associated with the parallel FFT algorithm can be
mapped onto the N nodes of the nCUBE 2 in many different ways (i.e., N! different ways).
An obvious choice is to map subtask j to node j. For this particular mapping, at every stage,
a subtask will communicate with another that is one link away. Therefore, the value of the
average distance metric for this mapping is @« = 1. As would be expected, this mapping
performs very well when implemented because there is no contention for communication
resources. The “optimality” of this mapping is well documented in the literature (e.g., see
[5]). Recall, however, that the purpose of this experimental study is not to identify a single
“good” mapping, but to quantify the “relative goodness” of any given mapping based on the

associated values of the aforementioned metrics.

6.4 Timing Results

The purpose of this part of the study is to quantify the “quality” of a given mapping by
correlating computed values of the metrics «, 3, and 4 with measured communication times
from the nCUBE 2. Numerous mappings (1,000) were obtained by randomly assigning one
subtask per node. A partition of N = 2* nodes was used in this study, and the number of
input data points for the FFT was P = 2'2. Thus, each subtask was assigned a group of
28 = 256 points. The arithmetic operations (multiplication and addition) required by the
FFT algorithm were not included, as the focus of this study was to investigate the impact of
different mappings on the communication time of the FFT program. These arithmetic oper-
ations would introduce only a constant factor in the overall execution time, and eliminating
them minimized the time required to conduct these experimental studies on the nCUBE 2.

Scatter plots of «, 3, and  versus communication times are shown in Figs. 14, 15, and 16,

respectively. For all three figures, solid lines are drawn through the average of the measured
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Figure 14: Scatter plot of o versus measured communication time.

communication times for each observed metric value. The correlation coefficients between
metrics and communication times are shown in Table 1.

Of the three metrics considered, note that « is the poorest overall predictor of commu-
nication time. In fact, communication time is virtually uncorrelated with the value of this
metric. From Fig. 14, observe the gap between “good” mappings, which have communica-
tion times around 5.5 msecs, and “bad” mappings, which have communication times over
6.5 msecs. Although it is not surprising that all mappings with a value of o = 1 are good
mappings, it is somewhat surprising that there is a significant number of mappings with
a > 1 that are also good mappings. In fact, all mappings with o > 3 are good mappings.

To understand these results, observe from Fig. 16 that every good mapping (as defined
previously from Fig. 14) has the same minimal possible value of v (i.e., ¥ = n = 4). Thus, the

value of & may be high for a given mapping, however, if its associated value of 7 is minimal,
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Table 1: Correlation coefficients between metrics and measured communication times.

| metric | correlation coeflicient |

o 0.0258
3 0.5858
~ 0.8349
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then the mapping is good. This result does make intuitive sense when one considers how
communication paths are established on the nCUBE 2. In particular, because the paths are
established using fast routing hardwére, communication times can be relatively independent
of the value of «, provided that there is no link contention. (A more detailed explanation of
how paths are established through the hypercube network of the nCUBE 2 is described in
Section 7.) The minimum value of v (y = 4 in this case), represents mappings in which each
link in the hypercube is used by at most one path during any given stage of communication.

The fact that all generated mappings that had a value of o > 3 had corresponding values
of 4 = 4 is a result of a graph-theoretic relationship between the communication pattern of
the FFT program and the topology of the hypercube. Thus, for the FFT program, “spreading
out” the subtasks as far as possible—as measured by the value of a—actually minimized
link contention for each stage of communication. However, one would not necessarily expect
this to be the case for general applications and/or different network topologies.

The metric 3 correlates reasonably well with communication time, i.e., better than «
but not as well as . Note from Fig. 15 that there are some good mappings for which the
corresponding value of 3 is not minimal (i.e., there are good mappings that have values f = 3
and B = 4). These represent mappings for which at least one link of the hypercube is used by
three or four paths over the execution of the entire program, but these same links are used
only once during each phase of communication. Thus, there is actually no link contention
at any instant in time for these mappings. Clearly, 3 does not discriminate between spatial
and temporal contention, but 7 does.

Although 7 is the best of the three metrics considered for the FFT program, it is also
the least generally applicable across various application domains. In particular, 4 cannot
be directly computed for applications in which there are no “stages of communication.” In
contrast, the metric 8 (which does not have the temporal fidelity of v) can be applied to
any application program, and thus may be the metric of choice in general. One possible
way to utilize the metric « for general applications would be to capture, during the tracing
of a general program, timing information between communications. In this way, 1t may

be possible to detect “pseudo-stages of communication,”

and thus compute v accordingly.
However, extra time would be required to analyze and cluster this traced timing information

into pseudo-stages of communication.




7 Evaluation of the Alternate Routing Capability of
the nCUBE 2

In its default (i.e., normal) operating mode, the nCUBE 2 system establishes routes through
its hypercube network according to the default routing scheme as defined in Section 5. Special
communication hardware at each node, called the Network Communication Unit (NCU) [8],
provides support for this routing function. To send data from one node to another on the
nCUBE 2, the library function nwrite() is used. This construct gathers information needed
to build the actual message that is sent through the network.

Messages are composed of two parts: the header and the body. The header is the first part
of the message and includes information such as the source and destination node numbers,
the message type, and the total length of the message. The second part of the message is the
body, which is the actual data being sent. The nwrite() function processes and assembles
the information for the message, and this information is passed to the operating system (OS)
using a trap. Code within the OS writes the message to a queue that is readable by the NCU.
The NCU takes the message header from the queue, examines the destination node number,
calculates the next node in the path (by comparing the destination node number with the
node number of the NCU), and sends the message through the appropriate communication
channel to the next node along the route.

In addition to default routing, the NCU does provide support for establishing alternate
routes through the hypercube interconnection network. This is accomplished by utilizing
a special forwarding mechanism, which is enabled by setting a “forwarding bit” within the
address field of the header (the destination node number also resides in the address field). To
establish an alternate route, the address of each node (except the source) in the route must
be listed in a sequence of address fields within the header, and the forwarding bit associated
with each of these intermediate address fields must be set, with the exception of the last
address, which is the final destination.

When a message header arrives at a node, the NCU checks the status of the forwarding
bit associated with the first address field in the header.

e If this forwarding bit is set and the address in this field matches that of the NCU,
then the NCU assumes that it is actually an intermediate “forwarding node” (not the
destination), and the next address field is used to define the destination (the current
address field is discarded). Based on the value of this new destination address, the

message is appropriately routed through the network to the next node in the path.

e If the forwarding bit within the first address field is not set upon arrival at an NCU,
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then the NCU compares its own address against the destination address in this field,
and appropriately sends the message to the next node in the path (or transfers the
body of the message to the current processor’s memory if it has arrived at its final

destination).

To prevent improper use and/or invalid routes from being requested, the nCUBE 2 sys-
tem software is intentionally designed to prevent the portion of the address field where the
forwarding bit resides from being accessed (either directly or indirectly) by an application
programmer. Only the OS of the nCUBE 2, called Vertex, can set this bit. For the pur-
poses of this experimental study, a licensing agreement was granted to Purdue from nCUBE
Corporation, which provided us with the source code of Vertex. We were able to modify
the Vertex code so that forwarding address fields could be inserted into the message header
through custom library calls made from the application source code.

A simple experiment was conducted to illustrate the potential advantage of implementing
alternate routes. Eight nodes of the nCUBE 2 (i.e., a 3-dimensional hypercube) were used
for this study, and a simple program was written to send two messages between two distinct
pairs of nodes. The first message, denoted as message 0, contained 10K bytes of data and
was sent from node 1 (001) to node 3 (011). The second message, denoted as message 1,
contained only 8 bytes of data and was sent from node 0 (000) to node 7 (111), refer to
Fig. 17. The single link used to route the large message 0 from node 1 to node 3 is an
intermediate link along the default route from node 0 to node 7. The measured time to
transmit message 1 under different conditions are provided in Table 2.

The first column of times in Table 2 correspond to the case where the large message 0 is
not transmitted at all (i.e., the corresponding nwrite() and nread() commands were not
included in the source code). The second column of times in the table are for the case where
the large message 0 is transmitted (i.e., the link between nodes 1 and 3 is congested). In this
case, if the default route for message 1 is used, then the corresponding communication time
is large because the path for message 1 cannot be established until after the large message
0 has completed transmission. However, by using the alternate route, the congested link
is avoided and a communication time is achieved that is comparable to the case in which
message 0 is not sent. This alternate routing is a solution from the modified multiflo routing
algorithm of OMARS.

The communication time using the alternate route is 4 psecs longer than that of the
default route with no congestion because the required message header is longer. In particular,
two extra address fields (four bytes each) were inserted and transmitted with the message
header in order to establish the alternate route. However, the advantage in using the alternate

route outweighs the disadvantage of this small extra overhead. The time associated with
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Figure 17: Overview of the scenario used for the alternate routing experiment. The alternate
routing shown is a solution from the modified multiflo routing algorithm of OMARS.

Table 2: Measured communication times (in usecs) for message 1 of Fig. 9.

| OS/(selected route) | message 0 not sent | message 0 sent |

original Vertex 190 1885
(default route)
customized Vertex 194 194
(alternate route)

using the default route when message 0 is sent (i.e., 1885 usecs) is proportional to the size
of message 0; 10K bytes was used for this experiment to ensure that the link from node 1 to
3 was severely congested. Using different sizes for message 0 would produce correspondingly

different values for this time.

8 Summary and Future Work

The developmenf of OMARS is an ongoing effort. The primary goal of OMARS is to provide
software engineers with some tools for addressing relatively low-level issues (i.e., mapping
and routing) that arise when developing large software applications on parallel processing
platforms. The functionality of OMARS was enhanced in this effort by including a new target

architecture: the Intel Paragon. The importance of making effective mapping and routing
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decisions was illustrated based on experiments from the nCUBE 2. Plans are currently being
made to introduce OMARS, on an experimental basis, to students in a parallel programming
class, as a means of getting user feedback. Plans beyond this initial release are to eventually

make the tool available to the general public.
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